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Administration. This report does not constitute a standard, specification, or regulation. 
This document is disseminated under the sponsorship of the Department of 
Transportation, University Transportation Centers Program, in the interest of information 
exchange. The U.S. Government assumes no liability for the contents or use thereof. 
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1 ABSTRACT 

This report presents a general probability-based approach for assessment of roadway safety 

hardware (RSH). It was achieved using a reliability analysis method and computational 

techniques. With the development of high-fidelity finite element (FE) models, numerical crash 

simulations can be performed to evaluate various RSH systems, in addition to crash tests. For 

highly nonlinear and implicit impact responses, metamodeling techniques provide a rational 

approach to replace the expensive numerical simulations. In this study, radial basis functions 

(RBFs) were employed to create approximation functions of limit state/performance functions 

using a relatively small number of sample points. Once the RBF metamodels were created, the 

failure probabilities were estimated using simulation methods such as Monte Carlo simulations 

(MCS). Based on the proposed approach, the failure probability can be obtained at different 

intensity measure (IM) levels, such as impact velocities. Effective use of numerical crash 

simulation and a metamodeling technique permits reliability analysis in an efficient manner and 

minimizes the number of required crash tests. As an application area, the assessment of a New 

Jersey concrete barrier was studied in this project to demonstrate the probability-based approach. 

Various crash responses and the corresponding response limits were selected and failure 

probabilities were calculated. The reliability analysis method will lead to the vulnerability 

analysis of RSH systems. It can be used to improve transportation safety, reduce the costs of 

RSH systems, and potentially replace the traditional pass/fail method widely used in practice. 

 

Keywords: reliability analysis, vulnerability, Monte Carlo Simulation (MCS), roadway safety 

hardware (RSH), finite element (FE), crash simulation, radial basis function (RBF) 

 

2 INTRODUCTION 

The ever-increasing traffic volumes on state and local highways have raised more public 

concerns on transportation safety. Vehicular crashes at high speeds usually lead to significant 

social and economic loss, in addition to loss of occupant lives. RSH systems shall be designed to 

redirect an impacting vehicle so that a rollover or a second crash with other vehicles is 

prevented. Therefore they can be effective in minimizing the injuries to occupants in a vehicle. 

Over the years, different types of RSH systems have been designed and installed in order to 

reduce the severity of vehicle crashes. These include roadside or median barriers, guardrails, 

bridge rails, terminals, and crash cushions. Historically, the vehicle crashworthiness and 

performance of RSH systems have been evaluated using limited full-scale crash testing and in-

service performance. The proposed research project focused on the development of a reliability 

analysis and safety evaluation method for RSH systems using computational techniques.  

 

For commonly used RSH systems, improving the design methodology from a prescriptive 

pass/fail method to a probability-based method is an important task for highway safety research. 

Very limited research is found in literature that aims to develop probability-based approaches or 

analytical models for assessing the vulnerability of RSH systems subjected to vehicle crashes. 

Such approaches or analytical models are essential to the understanding of vehicle crashes and 

RSH failures as well as to designing and retrofitting RSH systems. Due to the limitations of 
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physical testing, there is a need to perform reliability analysis using numerical crash simulations 

so that various levels of vehicle crashes can be considered. 

 

Engineering vulnerability analysis is primarily based on reliability analysis methods which are 

used to calculate the failure probability of a given engineering system. Therefore the level of 

safety of the system can be evaluated. A probabilistic description of the crash failures and 

vulnerability of RSH systems subjected to vehicle crashes is described by an impact IM. The IM 

is an attribute of a vehicle impact that can be used to describe the level of impact severity and 

potential failures for a given RSH system, such as impact velocity or impact angle of the vehicle. 

The most commonly used reliability analysis methods in literature fall into two categories: most 

probable point (MPP) and sampling methods. The MPP-based methods are widely used for 

structural and mechanical systems, when combined with simulation or analysis methods such as 

the FE methods. These include first-order reliability methods (FORM) and second-order 

reliability methods (SORM). Since first-order derivatives of simulation responses or outputs are 

required, the integration of the MPP methods with an available FE code is usually not 

straightforward, especially for complicated nonlinear problems. In the sampling methods, the 

random variables are sampled and the limit state/performance function is evaluated at all sample 

points. Since derivative calculations are not required in the sampling methods, sensitivity 

analyses of the limit state function in terms of the random variables can be avoided. Moreover, 

an FE analysis code is routinely treated as a black-box program in a sampling method. It is very 

straightforward to implement the method, although it is not efficient, especially when a large 

number of numerical analyses are needed. In this case, it becomes computationally prohibitive to 

combine a sampling approach with expensive numerical simulations.  

2.1 Research Objectives 

In this study, a general probability-based analysis framework for assessing the RSH design and 

performance was developed. The probability of RSH failures under vehicular impacts was 

investigated using post-impact vehicle responses, such as velocities and accelerations. This 

research used computational techniques to develop a basic understanding and foundation for a 

much needed analytical model for the vulnerability analysis of RSH systems under vehicular 

impacts (i.e., crash magnitudes vs. RSH failure probability). The research is intended to improve 

engineering practice in the field of transportation safety and decision-making. This is different 

from the current deterministic approach which uses a prescribed pass/fail criterion based on 

“representative” or average conditions. The results of the proposed research will lead to optimum 

engineering solutions for the cost-effective installation and retrofit of various RSH systems.  

2.2 Research Methodology 

The research project studied vehicle-RSH impacts and investigated vehicle as well as occupant 

responses. In most physical tests, crash dummies are not used. Evaluation criteria that are 

directly based on occupant injuries are not commonly considered. Therefore, the occupant safety 

and injuries are evaluated primarily based on responses of the vehicle alone. In this study, a 

physics-based numerical simulation method and a probability-based approach were combined in 

order to develop a general reliability analysis method that will be useful for transportation safety 

study. To reduce computational efforts, a metamodeling technique was developed. The RBFs or 

augmented RBFs were used to construct explicit metamodels of the crash responses and limit 
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state functions. After the explicit form of a limit state function was obtained, the MCS method 

was applied to estimate the failure probability. The methodology developed in this study can be 

applied to RSH systems under different crash conditions. As a sample application area, the 

proposed method was applied to the reliability analysis of New Jersey concrete barriers. The 

general methodology was demonstrated and multiple limit state functions involving vehicle and 

occupant responses were considered. A pickup truck specified by the current crash standard was 

adopted in the nonlinear crash simulations. 

2.3 Report Organization 

In the remainder of the report, some background research including a review of literature and 

safety evaluation of RSH systems is reviewed in Section 3. Details of the numerical simulations 

are introduced in Section 4. The FE models of a pickup truck and concrete barrier and validation 

of the numerical models are presented. Existing crash test data available in the literature were 

used for model validation. Section 5 of the report presents details of the probability-based 

analysis method. A metamodeling method and the overall flowchart of the approach are 

introduced. The metamodeling technique based on RBFs and augmented RBFs is explained, and 

it was used to create explicit nonlinear crash response functions. As an application area, the 

concrete barrier problem is introduced in Section 6. The limit state functions and the reliability 

analysis results are presented. Concluding remarks are given in Section 7. Finally, some future 

research topics are summarized in Section 8.  

 

3 BACKGROUND RESEARCH  

3.1 Literature Review and State of Practice 

3.1.1 RSH design and testing 

Highway safety research, which involves vehicle crashes, usually focuses on the design and 

evaluation of RSH systems that prevent vehicles from rollover, crashing into other vehicles, or 

entering undesirable regions. Over the years, various RSH systems have been developed and 

installed in order to reduce vehicle crashes. Figure 1. Commonly-used RSH systems [1-4]. shows 

three commonly-used RSH systems in the U.S., including concrete, W-beam, and cable barriers 

[1-4]. Although these barriers are generally effective, there remains significant room for 

improvement. To verify the crash behaviors of the RSH systems, full-scale physical crash tests 

have been conducted in prescribed conditions that should be representative of the service 

installation. The document entitled “The Highway Research Correlation Services Circular 482” 

was the first published document for crash tests and evaluation of the performance of RSH 

systems [5]. The National Cooperative Highway Research Program (NCHRP) adopted the 

NCHRP Report 350 in 1993 [6], which is a safety standard for roadside safety in the U.S. The 

NCHRP Report 350 specifies the testing and evaluation criteria for RSH systems before they can 

be installed on highways. Numerous studies have been conducted since then to evaluate different 

types of barriers as well as other highway safety features using physical crash tests [7-20]. 
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a. b. c. 

Figure 1. Commonly-used RSH systems [1-4]. 

a. a concrete barrier; b. a W-beam guardrail; and c. a cable barrier. 

 

An updated safety guideline, the Manual for Assessing Safety Hardware (MASH), was published 

by the American Association of State Highway & Transportation Officials (AASHTO) in 2009 

[21]. Full-scale crash tests were conducted under MASH TL-3 conditions at the Midwest 

Roadside Safety Facility (MwRSF) [22-28] and the Texas Transportation Institute (TTI) [29-33]. 

In these physical tests, various types of barriers and guardrails were studied. A concrete bridge 

rail was designed and tested under the impact of a single unit truck to meet the MASH TL-4 

conditions. The FE model of the truck was validated based on the test data [34]. Some other full-

scale physical crash tests on RSH systems can also be found in the literature [35-38], including 

testing under MASH TL-5 conditions [36] and the special condition of missing a post of 

longitudinal barriers [37]. 

 

Although physical crash tests are commonly used to obtain valuable information on vehicular 

impact behavior, they are primarily used for limited validation purposes. The evolution of new 

computer hardware and software technology has promoted the usage of explicit FE codes such as 

LS-DYNA in crash analyses [39]. It becomes affordable and popular to rely on full-scale FE 

simulations to study vehicular crashes [40-46]. In addition, FE models of various vehicles [47-

53] and RSH systems [54, 55] were developed. Due to the efficiency and effectiveness of 

numerical simulations, they have been widely adopted to aid the performance evaluation and 

improvement of various RSH systems [56-85].  

3.1.2 Simulation-based optimization and reliability analysis 

Using numerical simulations, optimal designs and reliability analysis of complex engineering 

problems can be performed in an effective manner. In the automotive industry, numerous studies 

have been performed on crashworthiness design and optimization of vehicular components and 

structures [86-95]. In the transportation safety field, simulation-based design optimization has 

not been widely developed and adopted in RSH designs. Recently, Hou et al. [96, 97] and Yin et 

al. [98] studied design optimization of different median barrier systems under vehicle crashes.  

 

Although MCS can be used to provide relatively accurate assessment of the system performance 

or reliability, this method is computationally very expensive, and often unaffordable, when 

combined with high-fidelity nonlinear FE models to obtain system responses. This is because 

MCS would require a large number of computationally expensive analyses to obtain sufficiently 

accurate results [99]. Alternatively, FORM and SORM can be adopted to provide relatively 
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efficient computational solutions for estimating the reliability of a structural system [100]. 

However, both FORM and SORM involve system sensitivity analyses that require the gradients 

of a structural response. Given the implicit nature of the structural responses in a numerical 

analysis, the finite difference approximation is commonly used in the sensitivity analysis [101], 

but it can be expensive as well due to the additional simulations required to calculate the 

gradients. For the above-mentioned challenges of the three methods for reliability analysis, there 

is a need to adopt a more efficient approach to conducting reliability analysis. 

 

Over the past decades, performance-based analysis and design methods have been extensively 

developed in civil and structural engineering [102-106], especially in earthquake engineering 

[102-104]. In a performance-based analysis, the system response is described in terms of 

engineering demand parameters and is evaluated according to different IM levels (e.g., 

earthquake intensity). The system performance is evaluated by comparing the structural response 

to appropriate damage measures, which are used to determine the levels of physical damage 

[102]. The structural reliability analysis and the performance-based approaches have led to 

reliability-based optimal designs of structures [107, 108]. Among the tools developed in 

probabilistic methods, the construction of fragility curves has attracted considerable interest in 

the research community, especially earthquake engineering [109-114]. Fragility describes the 

ability of an engineering system or component to withstand a specified event. A fragility curve is 

a statistical tool representing the cumulative probability of the engineering demand placed upon 

the system exceeding its capacity. This represents failure with respect to a specific limit or 

failure state for a given IM level [112].  

3.1.3 Metamodeling methods 

In simulation-based reliability analysis, a large number of numerical analyses are generally 

required. The highly nonlinear impact simulations are computationally very expensive, because 

the simulations involve large deformations, material failures and a large number of contact 

analyses. This brings significant challenges to reliability analysis using MCS directly [99]. To 

improve the computational efficiency yet maintain the complex features of modeling, various 

metamodeling approaches have been studied and become available in the reliability analysis of 

structural and mechanical systems involving expensive simulations.  

 

To meet the challenges in simulation-based reliability analysis, a rational approach is to replace 

the expensive numerical simulations (used to obtain structural responses) with inexpensive yet 

accurate metamodels or surrogate models. For each structural response, a metamodel can be 

constructed using results of prescribed simulations for a certain number of input conditions. The 

advantages of metamodels are that they are in explicit mathematical forms with readily available 

gradient functions, beside their high efficiency in obtaining a structural response compared to the 

numerical simulations. The most popular metamodel is the response surface method (RSM). The 

RSM uses the least-square polynomial regression model, which is efficient and simple to use; it 

has been widely applied in many practical problems including engineering reliability analysis 

[115-121], design optimization [122-124], and reliability-based design optimization [125, 126]. 

To improve the accuracy of RSM models used in reliability analysis, different techniques were 

proposed such as the vector projection sampling techniques [117], resampling techniques [118], 

and higher order effects in the response function [119, 120]. However when a single global RSM 

model is used for the entire response space, large errors may be introduced in the approximation, 
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especially when highly nonlinear functions are considered. To improve model accuracy, local 

RSM methods were proposed. The moving least squares technique was applied in reliability 

analysis to deal with highly nonlinear responses [121]; however, these local approaches can only 

represent a small region of the entire response space. Other metamodeling approaches are also 

available to approximate implicit functions, for example, kriging [127, 128], artificial neural 

networks [129, 130], high-dimensional model representation (HDMR/FHDMR) [131-133], and 

RBFs [134, 135]. 

 

The RBFs were originally used to fit irregular geographical data [136]. Recent studies showed 

that the RBFs could create better approximation models compared to other global methods such 

as the global RSM for highly nonlinear responses [137, 138]. One advantage of RBFs is that 

RBF metamodels have no errors on the sample points. Many different basis functions were 

studied by Fang et al. [139, 140]. These functions included Gaussian, multiquadric, as well as 

Wu’s compactly supported (CS) basis functions [141]. In these studies, the CS basis functions 

were used to generate metamodels of different responses, including linear and highly nonlinear 

mathematical and engineering functions. Several accurate basis functions were identified. For all 

test functions, the augmented RBF metamodels based on CS basis functions were shown to have 

better accuracy than their respective non-augmented models. Multiobjective optimization of 

complex structures including crashworthiness design was successfully solved using metamodels 

created based on augmented RBFs [138-140]. 

3.2 Safety Evaluation of RSH Systems  

3.2.1 Vehicle responses based on MASH 

In the U.S., RSH systems should be tested and evaluated to meet the MASH requirements [21]. 

MASH specifies a total of six test levels (TL). The MASH TL-3 conditions, which are listed in 

Table 1, were employed in this study. This is the commonly used TL by State Departments of 

Transportation (DOTs). In Table 1, 1100C represents a small passenger car of 1100 kg. Test 

designation 3-11 requires a 2270P vehicle which refers to a 2270-kg pickup truck. In this study, 

only 2270P was used for numerical simulations and reliability analyses. However the proposed 

reliability analysis method is general and can be applied to any other vehicles with different 

crash conditions. 

 

Table 1. TL-3 conditions in MASH [21]. 

 

Test designation Test vehicle Impact velocity  

(km/h) 

Impact angle  

(degree) 

3-10 1100C 100 25 

3-11 2270P 100 25 

 

The performance of an RSH system under vehicular impacts is evaluated using different criteria. 

According to MASH, the three criteria are “the risk of injury to the occupants of the impacting 

vehicle,” “the structural adequacy of the safety feature” and “the post-impact behavior of the test 

vehicle” [21].  The “structural adequacy of the safety feature” is not a major concern for concrete 

barriers. The post-impact vehicular behaviors include various impact angles and velocities of the 
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vehicle. Besides the maximum yaw, pitch, and roll angles of a vehicle, the vehicle’s exit angle 

(EA) is also an important measure for evaluating RSH systems. The maximum roll angle and the 

vehicle’s EA are related to the vehicle’s rollover and safe redirection, respectively. Figure 2 

illustrates the conditions of a vehicle impacting a median barrier, including the impact angle, exit 

angle, and the impact velocity (v = 100 km/h is shown here). Figure 3 defines the yaw, pitch, and 

roll angles of a vehicle. 

 

 
 

Figure 2.  Illustration of impact conditions. 

 

 
 

Figure 3. Yaw, pitch, and roll angles of a vehicle [85]. 

 

3.2.2 Occupant injury criteria based on vehicle responses 

In order to evaluate occupant responses, crash dummies can be adopted. However, they are not 

specified by MASH and have not been widely included in crash tests and simulations. The 

occupant injuries are evaluated mainly based on responses of the impacting vehicle. During a 

crash, the crash responses including impact forces, velocities, and accelerations can be used to 

quantify the severity of an impact. Furthermore, the occupant injury risk is correlated to severity 

of impact and vehicular responses [142]. MASH uses the flail space model to evaluate the impact 

severity and injuries [143]. Two major responses can be used, i.e., occupant impact velocity 

(OIV) and occupant ridedown acceleration (ORA). The OIV represents the hypothetical 

occupant-vehicle impact velocity, and it is a relative velocity. The OIV in the longitudinal and 

lateral directions are  

 

OIV𝑥 = ∫ 𝑎𝑥𝑑𝑡
𝑡0

0
   (1) 

OIV𝑦 = ∫ 𝑎𝑦𝑑𝑡
𝑡0

0
 (2) 
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In Eqs. (1) and (2), ax and ay are the accelerations of the vehicle in the two directions, 

respectively. tx and ty represent the times of free motions of the hypothetical occupant in the two 

directions, respectively. The time of free motions t0 = min{tx, ty}. To determine tx and ty, the 

following equations are solved:  

 

0 0
0.6

x xt t

xdt a dt    (3) 

0 0
0.3

y yt t

ydt a dt    (4) 

 

The acceptable and preferred maximum OIV values specified in MASH are 12.2 m/s and 9.1 

m/s, respectively. The ORA represents the greatest 10-ms average acceleration of the 

hypothetical occupant during the subsequent ridedown after t0. According to MASH, the 

acceptable and preferred maximum ORA values are 20.49 g and 15.0 g, respectively. The 

gravitational acceleration is denoted by g. 

     

 
a. 

 
b. 

Figure 4. Illustration of occupant injury concepts [85].  

a. THIV and b. OIV. 

 

Besides OIV and ORA, the acceleration severity index (ASI), post-impact head deceleration 

(PHD), and the theoretical head impact velocity (THIV) can also be used to evaluate occupant 

risks in a vehicular crash. These criteria are adopted by the European Committee for 

Normalization (CEN), but only recommended in MASH. The larger these values are, the higher 

the occupant risk to injury. The ASI can be calculated as 

 
1

22 2 2

( )
ˆ ˆ ˆ

yx z

x y z

aa a
ASI t

a a a

     
              

 (5) 
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where , , are the average accelerations in 50-ms and  = 12 g,  = 9 g, and  = 10 

g are the threshold accelerations of vehicle, respectively. The PHD is the maximum resultant 

acceleration filtered and averaged over a 10-ms period. The THIV and OIV have similar 

concepts, as can be seen from Figure 4. To determine THIV, the yaw motion is included and a 

1.2 × 0.6 m rectangular space in the vehicle interior is considered. 

 

4 FINITE ELEMENT ANALYSIS AND VALIDATION 

4.1 Finite Element Analysis 

In this study, a 2007 Chevy Silverado pickup truck was selected, which met the MASH TL-3 

requirements. LS-DYNA software was used for the explicit transient dynamic impact analyses.  

Figure 5 shows the FE models of the pickup truck, one with mesh and one without mesh. The FE 

model of the truck was developed at the National Crash Analysis Center (NCAC). It was initially 

validated based on the data obtained from full frontal crash and other tests [144-147].  

 

           
a.       b.                   

Figure 5. The FE models of a 2007 Chevy Silverado pickup (2270P). 

a. without mesh and b. with mesh [98]. 

 

 

        
a.    b. 

Figure 6. The New Jersey concrete barrier. 

a. cross-section and b. the FE model [98]. 
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The New Jersey concrete barrier (Jersey barrier) is widely used in the U.S. and was selected in 

this study. The cross-section of the Jersey barrier and its FE model are shown in Figure 6. The 

FE model of the Jersey barrier was also originally developed at NCAC. The Jersey barrier was 

set to be 20 m long. The concrete barrier was treated as rigid, and the rigid material MAT20 was 

assigned to the barrier. It is a common practice to model concrete barriers as completely rigid 

[55, 82], since they generally have insignificant deformation under vehicular impacts. The base 

of the concrete barrier was fixed in the FE model, so displacements were not allowed in a crash. 

 
Figure 7 shows the model of the entire barrier and vehicle system.  

 

 
Figure 7. The FE model of the entire concrete barrier and vehicle system [98]. 

 

4.2 Model Validation 

The FE models were validated against existing test data to ensure accurate results. Before the 

models were used in reliability analyses, the vehicle and concrete barrier models were further 

validated using full-scale crash test results from the literature [82]. Figure 8 show a visual 

comparison between the physical test data and the vehicular responses obtained using numerical 

simulations. Similar vehicular responses were observed in the computer simulation and the 

physical crash test at various time steps. The comparisons of the yaw and roll angles are given in 

Figure 9. Both the test data and FE analysis results are shown. It was found that the test data and 

analysis results have a good agreement [98]. It was concluded that the FE models were 

appropriate for impact simulations in this study. 
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a.     b.                  c.                     d.          e. 

 

Figure 8. Visual comparison of crash test and simulated vehicle responses [98]. 

a.t = 50 ms, b. t = 105 ms, c. t = 180 ms, d. t = 265 ms, and e. t = 475 ms. 

 

 
 

Figure 9. Comparison of both yaw and roll angles between FE analysis and test data [98]. 

 

5 A PROBABILITY-BASED ANALYSIS METHOD 

5.1 A Probability-Based Analysis Framework 

In the proposed research, a probability-based analysis method was studied. This will be 

eventually used to develop a probabilistic analytical model for assessing the failure of RSH due 

to vehicle crashes. The new analysis method will provide a probabilistic description of the crash 

failures of an RSH system subjected to vehicle crashes described by IMs. The IMs are a set of 

attributes of a vehicle impact that can be used to describe the level of impact severity and 

potential failures of a given RSH system, such as impact velocity or angle of the vehicle. In the 

analysis, an RSH performance index or failure index (FI) is first determined and expressed as a 

function of the RSH capacity (R) and crash responses (P), i.e., FI = f(R,P). For each IM or each 

set of IMs, the crash failure levels of RSH are determined by comparing the FI to the 

corresponding RSH crash failure criteria. The probability of failure is calculated. Figure 10 

shows the general framework of stochastic RSH crash analysis. 
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5.2 Engineering Reliability Analysis 

In an engineering reliability analysis, the probability of failure of a component or system can be 

evaluated. Calculation of the failure probability, PF, involves the following multidimensional 

probability integrals [148, 149]: 

 

      
  


0

0
x

xxx
g

XF dpgPP   (6) 

where x is an k-dimensional random variable vector, g(x) is a limit state function, and px(x) is the 

joint probability density function (PDF) of vector x, respectively.   0xg is defined as failure of 

the component or system. In many practical applications, px(x) is unknown. In addition, Eq. (6) 

is difficult to obtain since g(x) is an implicit function of x. Simulations of an engineering system, 

such as nonlinear FE analyses, are required to be integrated with a reliability analysis method. 

The function g(x) is often transformed into a standard Gaussian space and approximated using 

the first-order or second-order Taylor series expansion in FORM or SORM, respectively [149, 

150]. 

 

 
 

Figure 10. A general framework of stochastic crash analysis. 

 

5.3 A Metamodeling Technique Based on RBFs 

Consider an input-output response function as follows 

 

)(xgz                     (7) 

 

where x = [x1, … xk] is a design or input variable vector, and z is the output of function g(x). In 

many engineering problems, an explicit form of g(x) is unknown. However, g(x) can be 

evaluated using numerical simulations for any input x. The basic concept of a metamodel is to 

create an approximate but explicit expression of g(x). 
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Before a metamodel of function g(x) is created, the function value needs to be evaluated at some 

sample points, so that the entire input space is well represented. This is typically conducted using 

a design of experiments (DOE) method, such as Latin hypercube method [151], factorial design, 

and Taguchi method [152]. With the function values at a total of n sample points, metamodels 

can be created using RBFs, as  

 





n

i

iig
1

)()(~ xxx 
                                                                                              (8) 

 

where  and i are the RBF basis function and the weighted coefficient for the ith basis function, 

respectively. xi and || x – xi || are the input variable vector and Euclidean norm. The RBF 

metamodel as written in Eq. (8) is essentially a linear combination of radial basis functions 

constructed around each sample point. A number of basis functions were examined, including 

some commonly used functions and the CS functions [139]. These are listed in Table 2. 

 

Table 2. Commonly used radial basis functions [139]. 

 

Name Symbol Radial basis function 

Linear RBF-LN rr )(  

Cubic RBF-CB 3rr )(  

Thin-plate spline RBF-TPS 1c0,crlnrr 2    )()(  

Gaussian RBF-GS 1c0,er
2cr     )(  

Multiquadric RBF-MQ 1c0,crr 22    )(  

Inverse multiquadric RBF-IMQ 1c0,
cr

1
r

22



   )(  

Compactly supported (2,0) RBF-CS20 0
rr    t)()()(  ,tt5t9t51t1t 4325

0,2
  

Compactly supported (2,1) RBF-CS21 )()()( 324

1,2
t3t12t164t1t   

Compactly supported (2,2) RBF-CS22 )()()( 23

2,2
t3t98t1t   

Compactly supported (3,0) RBF-CS30 )()()( 654327

0,3
t5t35t101t147t101t355t1t   

Compactly supported (3,1) RBF-CS31 )()()( 54326

1,3
t5t30t72t82t366t1t   

Compactly supported (3,2) RBF-CS32 )()()( 4325

2,3
t5t25t48t408t1t   

Compactly supported (3,3) RBF-CS33 )()()( 324

3,3
t5t20t2916t1t   

 

A total of n equations can be written by replacing x  and )(~ xg  in Eq. (8) with the n input 

variable vectors at the sample points and corresponding function values, as 

 





n

i

iig
1

11 )()(~ xxx                                                                                                    





n

i

iig
1

22 )()(~ xxx                                                                                                    
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…
                                                                                                  





n

i

ining
1

)()(~ xxx                  (9)  

                                                            

To write Eq. (9) in a matrix form, as 

 

 g Aλ                                                                                                                            (10) 

 

where  1 2( ) ( ) ... ( )  
T

ng g gg x x x , )(, jijiA xx 
 
(i = 1, … n, j = 1, … n), and  = [1, 

… n]
T. The coefficients  can be calculated by solving Eq. (9). 

 

The RBF metamodel in Eq. (8) is generally appropriate for approximating nonlinear responses, 

since highly nonlinear basis functions are adopted. However, they were found to be less accurate 

to approximate linear functions [137]. To make RBFs suitable for both high-order and low-order 

responses, augmented RBF models can be defined by adding linear or quadratic functions to Eq. 

(8), as 

 





p

j

jj

n

i

ii fcg
11

)()()(~ xxxx                                                                                 (11) 

 

where )(xf  is a polynomial function. In the second part of Eq. (11), p and cj (j = 1,… p) 

represent the total number of terms and the coefficients in the polynomial, respectively. Because 

there are more unknowns than available equations, Eq. (11) is underdetermined. Therefore, the 

following orthogonality condition is required  

 

,...pjf
n

i

iji 1for    ,0)(
1




x                                                                                        (12) 

 

Equations (11) and (12) result in a total of (n+p) equations. To write the matrix form of these 

equations, as 

 

  

























0

g

c

λ

0F

FA
T

                                                                                                     (13) 

 

where )(, ijji fF x
 
(i = 1, … n, j=1, … p) and c=[c1, … cp]

T. Coefficients  and c for the 

augmented RBF model in Eq. (11) can be found by solving Eq. (13). 

 

For ease of discussion, an augmented RBF metamodel is expressed based on the symbol for its 

corresponding non-augmented metamodel with a suffix ‘-LP’ if a linear polynomial is considered 

or ‘-QP’ if a quadratic polynomial is added. One of the RBF models created using compactly 

supported function CS20 augmented with linear polynomials was found to have good accuracy; 

therefore, it was used in this study, namely RBF-CS20-LP. The RBF and augmented RBF 
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metamodels have explicit mathematical forms; therefore their function values can be very 

efficiently calculated. Another advantage of these metamodels is that all the required simulations 

at the sample points can be performed concurrently using parallel computation. Therefore the 

simulation time can be greatly reduced if a large sample of expensive simulations is required.  

 

To measure the accuracy of metamodels, the Analysis of Variance (ANOVA) may be used and 

the errors at sample points are needed. These errors are zeroes for RBF metamodels; therefore, 

ANOVA does not provide useful insight into the accuracy of RBF metamodels. Instead, the root 

mean square errors (RMSEs) can be used to assess the accuracy of RBF metamodels [140], as 

 

k

gg
k

i

ii




 1

2)~ (

RMSE

                                                                                         (14) 

 

Here a total number of k off-sample points are randomly generated. In Eq. (14), ig

 

is the true 

function value and ig~  represents the metamodel function value evaluated at the ith off-sample 

point, respectively. 

5.4 Estimation of Failure Probability  

Equations (8) and (11) provide approximation function )(~ xg
 
of g(x) using an RBF and 

augmented RBF metamodel, respectively. When MCS are applied based on the RBF metamodel 

)(~ xg , Eq. (6) becomes: 

 

     



N

i

i

F g
N

gPP
1

0~1
0 xx

       (15) 

 

where N is the MCS sample size, 
i

x  is the ith  realization of x , and   is a deciding function 

such that 1 , if   0~ ig x , and 0  if   0~ ig x . Based on the failure probability FP , the 

reliability index   can be determined by [131, 132]: 

 

 FP1            (16) 

              

where   is the cumulative distribution function (CDF) of a standard Gaussian random variable. 

The coefficient of variation 

 

used in MCS can be estimated as [131, 132]: 

 

 

F

F

NP

P


1


           (17) 

 

where N is the sample size of the MCS method and FP  is the failure probability, respectively.
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5.5 Overall Flowchart 

Figure 11 shows a flow chart of reliability analysis using RBF metamodels. Once an explicit 

RBF metamodel is constructed, the failure probability, 
F

P , can be estimated using any sampling 

method. In this study, the MCS method was applied. It is important to note that the number of 

expensive FE simulations depends on the sample size to create an RBF metamodel, rather than 

the sample size used in MCS. The computational cost is primarily from FE analyses and 

evaluations of function g(x), i.e., original implicit response simulations [153].  

 

Start

RBF Sampling

Stop

Evaluate limit state/performance

function values at all sample points

Evaluate failure probability by MCS

Construct RBF approximation of the limit

state/performance function

 
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Figure 11. Flow chart of reliability analysis using RBF metamodels [153]. 
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6 APPLICATION TO CONCRETE BARRIERS 

6.1 Background Information 

The proposed reliability analysis approach was applied to the assessment of a concrete barrier, as 

shown in Figure 6. MASH TL-3 was considered and the performance of the concrete barrier in 

redirecting a pickup truck was studied. The IM was the impact velocity of the vehicle, and only 

one velocity value was selected, i.e., impact velocity v = 100 km/h.  

6.2 Random Variables 

In this study, two random variables were considered, i.e., the impact angle and vehicle mass.  

Table 3 lists the statistical properties of the two variables. Since there are very limited published 

data in terms of the statistics of impact angle and vehicle mass, an assumption was made that 

they both followed normal distributions, with their mean values and standard deviations (SDs) 

listed in Table 3. Note that different types of variable distribution can be considered in the 

proposed method, once the metamodels are generated. To study the effects of different SDs, 

three SD values were studied for the vehicle mass, i.e., 100 kg, 150 kg, and 200 kg, although 

only SD=100 kg is listed in Table 3. The SD value of the impact angle was three degrees, which 

was considered reasonable based on engineering judgment.  

     

Table 3. Random variables for concrete barriers. 

 

 
 

6.3 Numerical Simulation Matrix and Results 

The simulation matrix of the concrete barrier is shown in Table 4. A 5×7 = 35 simulation matrix 

was created based on five impact angles (A) and seven vehicle masses (m). The software 

package HiPPO was used to create the simulation matrix [154]. Thirty-five crash analyses were 

conducted to obtain the vehicle crash responses. The five impact angles were 19º, 22º, 25º, 28º, 

and 31º. The vehicle mass included 2,338 kg, 2,438 kg, 2,538 kg, 2,638 kg, 2,738 kg, 2,838 kg, 

and 2,938 kg. All the values were selected in a range of ±2×SD of the impact angle and ±3×SD 

of the vehicle mass. The reliability analysis in this example was to evaluate the performance of 

the concrete barrier with the following scenario: impact velocity v = 100 km/h, impact angle A = 

25º, and vehicle mass m = 2,638 kg. 

 

All the numerical simulations were performed using LS-DYNA and the simulation results are 

listed in Table 5 to Table 15. Table 5 to Table 15 show various crash responses including exit 

angle, maximum vehicle acceleration, OIV-x, OIV-y, ORA-x, ORA-y, maximum roll and yaw 

angles, ASI, PHD, and THIV. When different crash responses and corresponding upper limits 

are considered, the limit state function g(x) in Eq. (5) is written as 

 

     xx ffg Limit    (18) 
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where  xf  represents different crash response functions, including those listed in Table 5 to 

Table 15. Limitf  is the upper bound limit of the crash responses considered in the study. The 

failure of an RSH system is defined as the value of crash response function  xf  exceeding the 

specified upper bound limit Limitf , i.e.,   0xg . In this example, the crash failure levels of RSH 

were determined based on Eq. (18) and the failure probabilities were calculated for various crash 

responses, when different Limitf  bounds were selected. 
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Table 4. Simulation matrix (5×7 = 35 simulations). 

 

 
 

Table 5. Simulation results – Exit angle of vehicle (degree). 

 

 
 

Table 6. Simulation results – Maximum vehicle acceleration (g). 
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Table 7. Simulation results – OIV-x (m/s). 

 

 
 

Table 8. Simulation results – OIV-y (m/s). 

 

 
 

Table 9. Simulation results – ORA-x (g). 

 

 
 

  

A=19 A=22 A=25 A=28 A=31

m=2338 2.73 1.54 1.48 0.89 0.69

m=2438 2.67 1.34 1.08 0.88 1.50

m=2538 2.22 1.53 0.91 0.15 1.79

m=2638 2.70 1.40 0.96 0.31 1.58

m=2738 2.19 1.42 0.98 0.73 0.89

m=2838 2.23 1.41 1.40 0.83 0.72

m=2938 2.32 1.39 1.32 0.64 0.88

Impact angle (degree)

Vehicle 

mass (kg)
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Table 10. Simulation results – ORA-y (g). 

 

 
 

Table 11. Simulation results – Maximum roll angle (degree). 

 

 
 

Table 12. Simulation results – Maximum yaw angle (degree). 

 

 
 

  

A=19 A=22 A=25 A=28 A=31

m=2338 29.06 25.87 23.81 21.74 19.50

m=2438 33.30 27.76 25.34 23.15 21.19

m=2538 34.21 27.88 27.61 24.32 22.65

m=2638 36.28 32.76 28.60 25.59 24.40

m=2738 42.86 35.72 31.79 27.46 25.45

m=2838 49.15 37.68 29.40 28.73 25.62

m=2938 56.22 41.61 34.96 29.32 26.53

Impact angle (degree)

Vehicle 

mass (kg)
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Table 13. Simulation results – ASI. 

 

 
 

Table 14. Simulation results – PHD (g). 

 

 
 

Table 15. Simulation results – THIV (m/s). 

 

 
  

A=19 A=22 A=25 A=28 A=31

m=2338 1.52 1.43 1.35 1.29 1.23

m=2438 1.49 1.43 1.38 1.31 1.23

m=2538 1.52 1.42 1.35 1.29 1.22

m=2638 1.47 1.39 1.34 1.32 1.22

m=2738 1.52 1.41 1.35 1.30 1.21

m=2838 1.49 1.38 1.38 1.29 1.21

m=2938 1.48 1.39 1.35 1.27 1.19

Impact angle (degree)

Vehicle 

mass (kg)
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The crash simulation results at various time steps (0 to 700 ms) for m = 2,638 kg and A = 25 

degrees are shown in Figure 12. It is seen that in the simulation, the pickup truck was 

successfully redirected after impacting the concrete barrier. 

 

  
a.       b. 

  
c.       d. 

  
e.       f. 

 
g.       h. 

 

Figure 12. Crash simulation results (m = 2,638 kg, A = 25 degrees). 

a.t = 0 ms, b. t = 100 ms, c. t = 200 ms, d. t = 300 ms, 

e.t = 400 ms, f. t = 500 ms, g. t = 600 ms, and h. t = 700 ms. 
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6.4 Reliability Analysis Results 

The reliability analysis results are summarized in Figure 13 to Figure 23. Figure 13 to Figure 23 

illustrate the failure probability or probability of exceedance (i.e., crash response  xf  exceeds 

an upper bound limit Limitf ) versus the upper bound limit Limitf . The failure probability value 

varies from 0.0 (no failure) to 1.0 (100% failure). In Figure 13, the crash response is the exit 

angle of the vehicle after impact. The upper bound limits of exit angle are from 5.5 to 7.5 

degrees. As the exit angle limit increases, the probability of failure, PF, decreases. The three 

standard derivations produced similar results, as can be seen from Figure 13. The reliability 

analysis results of the maximum vehicle acceleration (Acc) are shown in Figure 14.  The 

maximum vehicle acceleration limits considered are from 28 g to 36 g. As the maximum vehicle 

acceleration limit increases, the probability of failure, PF, decreases.  

 

 
Figure 13. Probability of exceedance vs. exit angle limit. 

 

 
Figure 14. Probability of exceedance vs. maximum vehicle acceleration limit. 
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Figure 15. Probability of exceedance vs. OIV-x limit. 

 

 
Figure 16. Probability of exceedance vs. OIV-y limit. 

 

The reliability analysis results of OIV-x and OIV-y are shown in Figure 15 and Figure 16, 

respectively. As expected, as the OIV-x and OIV-y limits increase, the probability of exceedance 

decreases. The reliability analysis results of the ORA-x and ORA-y are shown in Figure 17 and 

Figure 18, respectively.  As the ORA limits increase, the probability of exceedance decreases.  

 

 
Figure 17. Probability of exceedance vs. ORA-x limit. 
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Figure 18. Probability of exceedance vs. ORA-y limit. 

 

The reliability analysis results of maximum vehicle roll angle and yaw angle are shown in Figure 

19 and Figure 20, respectively. In the plots, the maximum roll angle limits are from 25º to 45º, 

and the maximum yaw angle limits are from 32º to 40º. As expected, as the maximum vehicle 

roll and yaw angle limits increase, the probability of failure, PF, decreases. The three standard 

derivations produced similar results, as can be seen from Figure 19 and Figure 20. 

 

 
Figure 19. Probability of exceedance vs. maximum vehicle roll angle limit. 
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Figure 20. Probability of exceedance vs. maximum vehicle yaw angle limit. 

 

Figure 21, Figure 22, and Figure 23 show the reliability analysis results of ASI, PHD, and THIV, 

respectively. The ASI limits are from 1.25 to 1.45. As expected, the probability of exceedance 

decreases as the ASI, PHD, and THIV limit increases, from more than 90% to less than 10% 

probability of failure, as shown in all three figures.  

 

 
Figure 21. Probability of exceedance vs. ASI limit. 

 

 
Figure 22. Probability of exceedance vs. PHD limit. 
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Figure 23. Probability of exceedance vs. THIV limit. 

 

7 SUMMARY AND CONCLUDING REMARKS 

To evaluate the performance of RSH and roadway facilities, the failures of RSH systems 

subjected to vehicle crashes were investigated. A reliability analysis method for assessment of 

RSH systems was proposed and studied in this project. The reliability analysis method was based 

on numerical simulations and metamodeling methods at different IMs. In order to reduce 

computational efforts involved in nonlinear FE analyses, accurate and efficient metamodels 

using RBFs or augmented RBFs were required. The MCS became straightforward once the 

explicit metamodels were created. With relatively small sample sizes, the proposed approach 

worked well. The failure probabilities for all the limit state functions were obtained. In addition, 

the number of FE analyses, i.e., original limit state function evaluations, was greatly reduced. 

The proposed approach provides an efficient way to evaluate the reliability of RSH systems, 

when expensive numerical analyses are required. Although only one metamodel, i.e., RBF-

CS20-LP, was used in the current work, a few other RBF metamodels can be applied and 

produce similar model accuracy.  

 

The proposed reliability analysis approach is general and applicable to various RSH systems 

under different crash conditions. In this project, a 2007 Chevy Silverado pickup truck impacting 

a concrete barrier was studied. Nine different crash responses and a total of eleven limit state 

functions were studied to evaluate the concrete barrier performance in redirecting the vehicle, as 

well as the occupant responses. The failure probabilities were evaluated according to different 

limit values of the crash responses. Based on the numerical results, it appeared that the SD value 

of the vehicle mass did not have a significant impact on the failure probabilities. The reliability 

analysis results provide useful information of the RSH performance that can be used to improve 

safety and reduce the costs of RSH systems.    
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8 FUTURE WORKS 

This project provided researchers, owners, and engineers a new probability-based methodology 

for assessing the performance and failures of RSH systems. More effort is needed to further 

study the reliability analysis method for design, installation, and retrofit of various RSH systems. 

Future work is suggested in the following areas: 

 

1. The probability-based method in this project shall be extended to a full vulnerability 

analysis of RSH systems so that a range of IMs can be considered.       

 

2. In the current project we only focused on concrete barriers. A study of the methodology 

and its application to other types of RSH systems, such as W-beams and cable barriers, will be 

beneficial to the transportation community.       

 

3. In this study, only a pickup truck was used for numerical simulations and reliability 

analyses. However the method can be applied to any other vehicles with different crash 

conditions. Future work also includes a performance-based method such that multiple vehicles 

can be considered. This will be of great value to the practicing as well as academic community. 

In addition, the behaviors of RSH systems impacted by different types of vehicles are different. 

Vulnerability analysis for RSH subjected to impacts by different types of vehicles shall be 

performed to give a full spectrum of fragility data in terms of vehicle crashes. 

 

4. Different types of metamodeling methods shall be investigated to maximize the efficiency 

of the numerical programs. These include kriging, neural networks, HDMR, and other methods.   
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